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Set up

Consider a Feynman integral in Schwinger parametric form. That is, use
∫ ∞

0

da e−ak2

=
1

k2

on propagators; swap the order of integration; integrate the Gaussian.

If we started with a scalar Feynman graph G in 4-dimensions we get
∫

ei≥0

δ(e1 + · · · + en)
∏

dei

Ψ2

where Ψ is the Kirchhoff polynomial of G,

Ψ =
∑

T spanning
tree of G

∏

e6∈T

ae

If our graph has some tensor structure or we want some other terms
from the epsilon expansion then we get extra stuff in the numerator.
But today I’m interested in denominators.
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What was that? – again for graph theorists

Let H be a 4-regular graph. Let G be H with a vertex removed. Again
form ∫

ei≥0

δ(e1 + · · · + en)
∏

dei

Ψ2

where Ψ is the Kirchhoff polynomial of G,

Ψ =
∑

T spanning
tree of G

∏

e6∈T

ae

• This will converge provided all proper subgraphs of G r v have
more than twice as many edges as independent cycles.

• That this is independent of the choice of removed vertex is a theo-
rem, but it is not known how to see it using this representation of
the integral.

• That Schwinger parametrization gives this is the matrix-tree the-
orem.
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Example

H =

a

b

c d
v

= G

Spanning trees of G =

ΨG =

∫
δ(a + b + c + d)

((c + d)(a + b) + cd)2

will diverge as c and d get large.
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A naive approach

Consider ∫

ei≥0

∏
dei

Ψ2

one edge variable at a time (Francis Brown).
So long as there is always a variable e so that the denominator is a
product of two linear polynomials in e,

(Ae + B)(Ce + D),

then we can do the e integration next, getting explicit, increasingly com-
plex polylogarithms in the numerator and

AD − BC

in the denominator.
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If the denominator is the square of a linear polynomials in e,

(Ae + B)2,

then we can again do the e integration. This time the weight of the
polylogarithms in the numerator does not increase.

If all is nice we will end up evaluating some polylogarithms at 1. This
gives multiple zeta values.
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Multiple zeta values

ζ(s1, . . . , sn) =
∑

a1>···>an≥1

1

as1

1 . . . asn
n

The weight of ζ(s1, . . . , sn) is s1 + · · · + sn.

Multiple zeta values

• generalize special values of the Riemann zeta function

• have an interesting algebra structure and relations

• are the periods of moduli spaces

• . . .
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Consequences

Everything is controlled by some combinatorics of polynomials

• We know exactly how things go bad – when the polynomial does
not factor. We can understand combinatorial criteria for this to
happen, or be avoided.

• We will get a weight drop when the denominator has a factor which
is a square or one of the edge variables is missing entirely.

• The basic story works even with stuff in the numerator.
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The Dodgson polynomials

The main tool for understanding the denominators are some polynomials

ΨI,J
K,G

which we can understand graphically or via matrices. Each viewpoint
has its uses.
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The incidence matrix

We need the (oriented) incidence matrix of a graph. For example
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Dodgsons by matrices

Suppose G has n vertices and m edges. Let Ê be the incidence matrix
with one row removed. Build the matrix

M = (−1)n+1





a1

. . .

am

ÊT

Ê 0





Then
ΨG = det(M)

Let I, J, K be sets of edges of G with |I| = |J |. Let MG(I, J)K be the
matrix obtained from MG by removing the rows of I, the columns of J ,
and setting αe = 0 for all e ∈ K. Then

ΨI,J
G,K = det MG(I, J)K .
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Spanning forest polynomials

Let P = P1 ∪ . . . ∪ Pk be a set partition of a subset of the vertices of G.
Define

ΦP
G =

∑

F

∏

e6∈F

αe

where the sum runs over spanning forests F = T1 ∪ . . . ∪ Tk where each
tree Ti of F contains the vertices in Pi. Trees consisting of a single vertex
are permitted.

Then
ΨI,J

G,K =
∑

±ΦP
G\I∪J∪K

where P runs over partitions of the vertices adjacent to edges in I and
J so that the resulting terms are trees after

• cutting I and contracting J and

• cutting J and contracting I.
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Example

a b

c d
e

f

1 2

3

4

Let P = {1}, {2, 4}. Then

ΦP
G =

What is Ψa,f
G ?
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Structure in the denominators

The first few integrations look like:

∫
1

ΨG∫
1

Ψ1,1
G ΨG,1∫
logs

(Ψ1,2
G )2

∫ ∑ logs

stuff∫
dilogs

Ψ12,34
G Ψ13,24

G

+
dilogs

Ψ12,34
G Ψ14,23

G

+
dilogs

Ψ13,24
G Ψ14,23

G∫
trilogs

5ΨG(1, 2, 3, 4, 5)
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The 5-invariant

The denominator after five integrations is given by

5ΨG(1, 2, 3, 4, 5) = ±det

(
Ψ12,34

G,5 Ψ125,135
G

Ψ13,24
G,5 Ψ135,245

G

)

Up to sign it doesn’t depend on order.
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4 and 6 and onward

It would be nice to have a 4-invariant too. We have

Ψ12,34
G Ψ13,24

G

Ψ12,34
G Ψ14,23

G

Ψ13,24
G Ψ14,23

G

We’d like to think of any one of these as a 4-invariant. This is justified
because any one of these gives the 5-invariant at the next integration.

We’d also like to have 6-invariants, 7-invariants, etc. This is not always
possible. The 5-invariant may not factor, or it may, but the 6 may not,
. . .
Write

Dn
G(i1, . . . , in)

for the nth denominator when it exists.
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Denominator identities I

Let

J =

1

2 3

4 5

A

B C

D

Let

K1 =

1

2 3

K2 =

1

2 3

with the same remaining graph connecting at the circled vertices. Pick
any 6th edge from among the remaining edges.

Theorem 1

D6
J = ±D4

K1
± D4

K2
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Denominator identities II

Let

G =
1

2

3

4

5
6

A

B C

D
E

Let

H1 =
1

2

3

4

A

B C

D
E

H2 = H3 =

with the same remaining graph connecting at the circled vertices.

Theorem 2

D6
G = ±D4

H1
± D4

H2
± D4

H3
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Denominator identities III

We can play the same games even if the graph is not almost 4-regular.
Let

L1 = L2 = L3 = L4 =

with the same remaining graph connecting at the circled vertices.

Theorem 3

D7
L1

± D7
L2

± D7
L3

± D7
L4

= 0

4-6



A special case – double triangle

Let

M = N =

Then
D7

M = D5
N
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Double triangle is a special case of Theorem 1

Double triangle is special because it says that one denominator is the
same as another, and since denominators determine the weight drops, it
says that one graph has weight drop if another, simpler graph

does.
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Proofs

All of these theorems are proved by manipulating the Dodgson polyno-
mials and spanning forest polynomials.

Simpler but along the same lines is the direct proof of the double triangle
identity. It will be most instructive to show it here.
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Proof of double triangle – 1 triangle

Let

G =

1

2

3

4 5

A

B C

D

with circles to indicate where the rest of the graph is attached. Let K

be the rest of the graph.
Calculate

5ΨG(1, 2, 3, 4, 5) = ±Ψ123,245
G Ψ14,35

G,2 .
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Ψ14,35
G,2 =

=

Ψ123,245
G =

=

So

5ΨG(1, 2, 3, 4, 5) = ±Φ
{A,D},{B},{C}
K

(
Φ

{A,B},{C,D}
K − Φ

{A,C},{B,D}
K

)
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Proof of double triangle – 2 triangles

G′ =
1

2

3

4 5

6 7

A

B

C

D
E

Let K again be the rest of the graph.
By the above applied to edges 1, 3, 2, 4, 6 we know that

5ΨG′(1, 2, 3, 4, 6) = ±Φ
{A,C},{B},{E}
K∪{5,7}

(
Φ

{A,B},{C,E}
K∪{5,7} − Φ

{A,E},{B,C}
K∪{5,7}

)

The two ends of edge 7 are in different parts of {A, C}, {B}, {E} so

Φ
{A,C},{B},{E}
K∪{5,7} = α7Φ

{A,C},{B},{E}
K∪5
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So we can easily continue the denominator reduction with edge 7.

6ΨG′(1, 2, 3, 4, 6, 7) = ±Φ
{A,C},{B},{E}
K∪5 Φ

{A,B},{C}
K∪5

=

From the pictures we can read off the contractions and deletions of edge
5 and deduce that the reduction with respect to edge 5 is

7ΨG′(1, 2, 3, 4, 5, 6, 7)

=
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We have

7ΨG′(1, 2, 3, 4, 5, 6, 7)

= ±
(
Φ

{A,B},{C},{D}
K Φ

{A,C},{B}
K − Φ

{A,C},{B},{D}
K Φ

{A,B},{C}
K

)

But this is itself a five-invariant, 5ΨG(1, 2, 3, 4, 5) so by the previous
calculation

D7(G
′) = ±

(
Φ

{A,B},{C,D}
K − Φ

{A,C},{B,D}
K

)
Φ

{A,D},{B},{C}
K
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Does this mean anything?

Recall Theorem 3:

L1 = L2 = L3 = L4 =

D7
L1

± D7
L2

± D7
L3

± D7
L4

= 0

The signs come from the choice of order of vertices and edges and direc-
tion of edges.
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4TR for chord diagrams

Compare the four-term relation for chord diagrams

− + − = 0

Along with the one-term relation

= 0

these are exactly the identities satisfied by Vassiliev invariants.
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Similarities and differences

• The shape of the identities in both contexts is exactly the same.

• We also have a one-term relation of denominators because double
edges give zero denominators once we integrate them.

but

• There is no “outer cycle”

• Sums of denominators are garbage

Is there some precise connection here or is it just a coincidence?
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Matroids

What else do denominators suggest?

Go back to momentum space, and suppose we are trying to remove tensor
structure from numerators using simple tricks like.

r · s

(r − s)2
= −

1

2
+

r2 + s2

2(r − s)2

If there is no edge involving only momenta r and s then we’re out of
luck.

If we toss in such a factor, then the denominator may no longer come
from a graph . . . but it does come from a matroid.
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Definition

A matroid consists of a finite set E and a set C of subsets of E satisfying

1. ∅ 6∈ C

2. If C1, C2 ∈ C and C1 ⊆ C2 then C1 = C2.

3. If C1, C2 ∈ C, C1 6= C2 and e ∈ C1∩C2 then there is a C3 ∈ C with
C3 ⊆ (C1 ∪ C2) r e.

For a graph,

E: set of edges

C: the set of cycles of the graph (circuits).

But matroids are much more general.

Can also define matroids in terms of E and bases which correspond to
spanning trees of a graph. And many other ways.
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Incidence matrices and representable matroids

Graphs have incidence matrices, recall our example

In the other direction, define a matroid from a matrix

• E is the set of columns

• a circuit is a set of columns which is linearly dependent but with
every proper subset linearly independent

A matroid which comes from a matrix is called representable.
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Row reduction and unique representability

None of the following change the linear dependence relations of columns

• Elementary row operations

• Removing rows of zeros

• Scaling columns

• Field automorphisms

So none of these change the matroid.

If we label the columns and keep track of the labels we can also swap
columns.

None-the-less a matroid may have inequivalent representations.
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Duality

Every matroid has a dual which generalizes the graph dual for planar
graphs. For us representable matroids will suffice.

Take a representable matroid with matrix M . Row reduce M swapping
columns and removing zero rows until it has the form

(In|D)

Then the dual matroid is represented by the matrix

(−DT |Im).

Matroids which are the duals of graphic matroids are called cographic

matroids.
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1PI, contraction and deletion

1PI is available for matroids (even though connectedness in the graph-
sense is not!). It is the property of bridgelessness, that is every e ∈ E

is in at least one circuit.

One can also contract and delete elements of a matroid, as for edges of
a graph. For a representable matroid

• cut by removing a column

• contract by row reducing until the column contains only one nonzero
entry, then remove the corresponding row and column.

The opposite of contraction is coextension it is not unique.
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Lets do something with all this

Tensor integrals can be resolved into scalar matroid integrals in the fol-
lowing way.

1. Begin with the matroid of the original graph.

2. Write the matroid in the form (IrkG C) with all entries of C are 0
or ±1.

3. Take a pair of edges of the graph.

4. Coextend with a new row which is nonzero in the columns of the
two edges chosen above, and a new column which is nonzero only
in the new row. By choosing appropriately the matrix can remain
in the form (

IrkG 0 C

0 Ir D

)

where all entries of C and D are 0 or ±1.
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5. This corresponds to adding a factor to the denominator of the Feyn-
man integral with momentum a linear combination of the momenta
of the pair of edges.

6. Continue until we have appropriate factors to clear all the tensor
structure from the numerator.

7. The matroid of the resulting denominator may not be uniquely
representable, but the nice representation above will be unique up
to row operations etc. This is the scalar Feynman integral of the
matroid.
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Example

q1

ℓ r

q2

q1 − ℓ r − q3

q2

q1 + q2 − ℓ q1 + q2 − r

q1 + q2 − q3

s

ℓ − s s − r

q1 + q2 − s

Suppose we have an ℓ · r in the numerator. We get a scalar integral

∫
d4ℓd4sd4r

ℓ2(ℓ − s)2s2(s − r)2r2(q1 − ℓ)2(q − ℓ)2(q − s)2(q − r)2(r − q3)2(ℓ − r)2

where q = q1 + q2.
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This corresponds to





ℓ ℓ − s s s − r r q1 − ℓ q − ℓ q − s q − r r − q3 q1 q2 q3 q − q3 ℓ − r

−1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 −1 1 0 0 0 0 0 0

−1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 −1 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 −1 −1 0 0 0 1 0

−1 0 0 0 1 0 0 0 0 0 0 0 0 0 1





It is not a graph, but it is dual to a graph.

6-10



Pro-matroid evidence

• Matroids capture the redundancy of graphs compared to Feynman
integrals.

• Allowing matroids, every graph has a dual.

• Whenever a graph result can be stated in terms of contraction and
deletion only, it ought to be a matroid result.

• Matroid integrals are a natural tool to decompose tensor integrals.
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Matroids suggest a hierarchy of difficulty.

1. Planar graphs: Both they and their duals are graphs.

2. General graphs and cographs: Cographs are a natural next term
for any series which begins with a planar piece and doesn’t continue
with graphs themselves.

3. Regular matroids: Regular matroids are nice in many ways, no-
tably they are uniquely representable over every field and they
have a matrix-tree theorem identical to that of graphs; typically
one’s graph based intuition is valid.

4. The matroids we need: They always have a nice representation in
the form (I|D) with D having entries 0, 1,−1.

5. General matroids: can be quite hairy.
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What was all that – I got lost

Summary

If we integrate one variable at a time in parametric form the denomina-
tors have nice combinatorial interpretations and satisfy identities.

Some of the identities let us determine the transcendental weight

of some graphs. Some of the identities look like chord diagram iden-

tities.

Matroids let us capture more denominators than graphs do, including
ones which come up when resolving tensor integrals. They also contain
exactly the information a Feynman integral needs.
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