Unfolding some recursive equations

Dyson-Schwinger equations and Renormalization Hopf algebras

Karen Yeats
Boston University
April 10, 2007
Johns Hopkins University

Lets get our intuition going

$$
X=\mathbb{I}+x B_{+}\left(X^{2}\right)
$$

What does this count?

$$
X=\mathbb{I}+x B_{+}\left(X^{3}\right)
$$

What does this count?

$$
X=\mathbb{I}-x B_{+}\left(\frac{1}{X}\right)
$$

What does this count?

Answers

Dyson-Schwinger equations combinatorially

$$
X=\mathbb{I}+x B_{+}\left(X^{2}\right)
$$

counts computer science binary trees (separate slots for left and right children).

$$
X=\mathbb{I}+x B_{+}\left(X^{3}\right)
$$

counts ternary trees with separate slots for left, middle, and right children.

$$
X=\mathbb{I}-x B_{+}\left(\frac{1}{X}\right)
$$

counts plane rooted trees.

As the simple tree examples, or systems

$$
X^{r}(x)=\mathbb{I}-\sum_{k \geq 1} x^{k} p_{r}(k) B_{+}^{k, r}\left(X^{r}(x) Q(x)^{k}\right)
$$

where $Q(x)=\prod X^{r}(x)^{s_{r}}$ and r runs over the different external leg structures.

Example: QED

$m \times n=\frac{1}{n}$

Dyson-Schwinger equations analytically

Example from Broadhurst and Kreimer [3].

$$
X(x)=\mathbb{I}-x B_{+}\left(\frac{1}{X(x)}\right)
$$

along with

$$
F(\rho)=\frac{1}{q^{2}} \int d^{4} k \frac{k \cdot q}{\left(k^{2}\right)^{1+\rho}(k+q)^{2}}-\left.\cdots\right|_{q^{2}=\mu^{2}}
$$

gives $\left(X \mapsto G, B_{+} \mapsto F\right)$

$$
\begin{aligned}
G(x, L)=1- & \frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2} G\left(x, \log k^{2}\right)(k+q)^{2}} \\
& -\left.\cdots\right|_{q^{2}=\mu^{2}}
\end{aligned}
$$

where $L=\log \left(q^{2} / \mu^{2}\right)$. The (analytic) DysonSchwinger equation for a bit of massless Yukawa theory.

Dyson-Schwinger equations and B_{+}

The key is B_{+}.
All the Hopf algebras we're interested in are generated by one or more B_{+}and so are the solutions of Dyson-Schwinger equations or quotients thereof.
B_{+}is a 1-cocycle

$$
\Delta B_{+}=\left(\mathrm{id} \otimes B_{+}\right) \Delta+B_{+} \otimes \mathbb{I}
$$

A subpiece comes from the branches, or is the whole thing. Unique decomposition.
$\left(\mathcal{H}_{r t}, B_{+}\right)$is universal for Hopf algebras with a 1-cocycle. Connes, Kreimer: [4].

Dyson-Schwinger equations physically

Equations of motion, analogous to the classical differential equations of motion.

By expanding in the coupling constant DysonSchwinger equations give perturbation theory.

But Dyson-Schwinger equations also contain non-perturbative information if we can extract it. Broadhurst and Kreimer [3] solved

$$
G(x, L)=1-\frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2} G\left(x, \log k^{2}\right)(k+q)^{2}}
$$

$$
-\left.\cdots\right|_{q^{2}=\mu^{2}}
$$

where $L=\log \left(q^{2} / \mu^{2}\right)$ parametrically with

$$
G(x, L)=\frac{\sqrt{x}}{\exp \left(p^{2}\right) \operatorname{erfc}(p)} \quad q^{2}=\mu^{2}\left(\frac{\operatorname{erfc} p}{\operatorname{erfc} p_{0}}\right)^{1 / 2}
$$

Other physical perspectives: http://web.mit. edu/redingtn/www/netadv/Xdysonschw.html

B_{+}and the universal law

The 1-cocycle property is the cohomological way to say unique decomposition.

Rooted trees are nice due to the unique decomposition of a tree into its root and the forest of its subtrees: B_{+}. For unlabelled trees, $\mathbf{T}(x)=\sum t(n) x^{n}$,

$$
\mathbf{T}(x)=x \exp \left(\sum_{m \geq 1} \mathbf{T}\left(x^{m}\right) / m\right)
$$

Which by Pólya's classical analysis gives the asymptotics

$$
t(n) \sim C \rho^{-n} n^{-3 / 2}
$$

Asymptotics of the form $C \rho^{-n} n^{-3 / 2}$ are ubiquitous for classes of rooted trees with recursive definitions, hence the term universal law.

Operators giving the universal law

How ubiquitous? Let \mathcal{O} be the set of operators on power series built out of

1. $\mathbf{E}(x, \cdot)$ such that
(a) $\mathbf{E}(x, y)$ has nonnegative coefficients and zero constant term,
(b) $\mathbf{E}(a, b)<\infty \Rightarrow \exists \epsilon>0, \mathbf{E}(a+\epsilon, b+\epsilon)<\infty$,
(c) $\exists R>0,\left[x^{i} y^{j}\right] \mathbf{E}(x, y) \leq R^{i+j}$.
2. MSet_{M} and Seq_{M} for all $M \subseteq \mathbb{Z}^{>0}$.
3. DCycle M_{M} and Cycle_{M} for $\sum_{m \in M} 1 / m=\infty$ or M finite.
using scalar multiplication from $\mathbb{R} \geq 0$, addition, multiplication, and composition, and where if MSet_{M}, DCycle $_{M}$, or Cycle ${ }_{M}$ appear then scalars and coefficients of \mathbf{E} must be integers.

B_{+}and the first recursion

For an analytic Dyson-Schwinger equation write

$$
G(x, L)=\sum \gamma_{k}(x) L^{k} \quad \gamma_{k}=\sum_{j \geq k} \gamma_{k, j} x^{j}
$$

The Hochschild closedness of B_{+}is what permits us to rewrite the linearized coproduct which along with $S \star Y$ gives the recursion ([5])

$$
\gamma_{k}(x)=\frac{1}{k} \gamma_{1}(x)\left(1+r x \partial_{x}\right) \gamma_{k-1}(x)
$$

Theorem 1. [Bell, Burris, - [1]] Let $\Theta \in \mathcal{O}$ such that

- Θ is nonlinear
- $\left[x^{n}\right] \Theta(\mathbf{A}(x))$ depends only on $\left[x^{i}\right] \mathbf{A}(x)$ for $i<n$.

Let $\mathbf{A}(x)$ be a power series

- with nonnegative coefficients
- with zero constant term
- which diverges at its radius of convergence
- if $\mathrm{MSet}_{M}, \mathrm{DCycle}_{M}$, or Cycle_{M} appear in Θ then $\mathbf{A}(x)$ has integer coefficients.

Then there is a unique $\mathbf{T}(x)$ satisfying

$$
\mathbf{T}(x)=\mathbf{A}(x)+\Theta(\mathbf{T})(x)
$$

The coefficients of \mathbf{T} satisfy the universal law on their support.

Again

$$
G(x, L)=\sum \gamma_{k}(x) L^{k} \quad \gamma_{k}=\sum_{j \geq k} \gamma_{k, j} x^{j}
$$

The properties of B_{+}don't care about connectedness which permits us to modify the primitives of the theory to

- reduce to one insertion place; univariate Mellin transforms.
- take away higher order behaviour of Mellin transforms; geometric series Mellin transforms.
which along with the other recursion gives ([6])

$$
\gamma_{1, n}=p(n)+\sum_{j=1}^{n-1}(-r j-1) \gamma_{1, j} \gamma_{1, n-j}
$$

$$
\gamma_{1, n}=p(n)+\sum_{j=1}^{n-1}(-r j-1) \gamma_{1, j} \gamma_{1, n-j}
$$

is what we were able to analyze to show that the primitives determine the growth of the whole theory.

In particular Lipatov bounds $\gamma_{1, n} \leq c^{n} n$! carry over.

The sub Hopf algebra result

Let $B_{+}^{d_{n}}$ be Hochschild 1-cocycles. Consider

$$
X=\mathbb{I}+\sum x^{n} w_{n} B_{+}^{d_{n}}\left(X^{n+1}\right)
$$

write $X=\sum x^{n} c_{n}$. Then the Dyson-Schwinger equation has a unique solution

$$
c_{n}=\sum w_{m} B_{+}^{d_{m}} \sum_{\substack{k_{1}+\cdots+k_{m}=n-m \\ k_{i} \geq 0}} c_{k_{1}} \cdots c_{k_{m+1}}
$$

and the c_{n} generate a sub Hopf algebra

$$
\Delta c_{n}=\sum_{k=0}^{n} P_{k}^{n} \otimes c_{k}
$$

where the P_{k}^{n} are homogeneous polynomials of degree $n-k$ in the c_{i}, specifically

$$
P_{k}^{n}=\sum_{\ell_{1}+\cdots+\ell_{k+1}} c_{\ell_{1}} \cdots c_{\ell_{k+1}}
$$

B_{+}and sub Hopf algebras

Today's punchline, solutions to Dyson-Schwinger equations are sub Hopf algebras. Bergbauer, Kreimer [2].

In the example

$$
X=\mathbb{I}+x B_{+}\left(X^{2}\right)
$$

$\left.c_{0}=11 \quad c_{1}=\cdot \quad c_{2}=21 \quad c_{3}=\Omega+4\right\}$

$$
c_{4}=4 \cdot q+2 \lambda+8 q
$$

check
$\left.\Delta c_{4}=4\left(\uparrow \otimes \mathbb{1}+\mathbb{1} \otimes \hat{\wedge}_{1}+\cdot \otimes\right\}+\cdot \otimes \lambda+\cdots \otimes\right]+1 \otimes 1+\cdot[\otimes \cdot)$
$+2(\lambda \otimes 1+\{\otimes \lambda+2 \cdot \otimes\}+\cdots \otimes 1+\lambda \otimes \cdot)$
$+8(\} \otimes \mathbb{1}+\mathbb{1} \otimes\}+\{\otimes \cdot+\{\otimes \mid+\cdot \otimes\})$
$=c_{4} \otimes c_{0}+c_{0} \otimes c_{4}+\left(2 c_{3}+2 c_{1} c_{2}\right) \otimes c_{1}$
$+\left(3 c_{1}^{2}+3 c_{2}\right) \otimes c_{2}+4 c_{1} \otimes c_{3}$

The role of B_{+}for the sub Hopf algebras

Bergbauer and Kreimer [2] give a very natural operadic proof and an elementary proof consisting of a triple induction.

The inductive proof has the advantage of showing explicitly the use of the Hochschild 1-cocycle property of B_{+}and that no deep facts are needed.

References

[1] Jason Bell, Stanley Burris, and Karen Yeats, Counting Rooted Trees. Elec. J. Combin. 13 (2006), \#R63. (Also arXiv:math.CO/0512432.)
[2] C. Bergbauer and D. Kreimer, Hopf algebras in renormalization theory. IRMA Lect. Math. Theor. Phys. 10 (2006), 133-164. (Also arXiv:hepth/0506190.)
[3] D.J. Broadhurst and D. Kreimer, Exact solutions of Dyson-Schwinger equations Nucl.Phys. B 600, (2001), 403-422. (Also arXiv:hepth/0012146).
[4] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative geometry. Commum. Math. Phys. 199 (1998), 203-242. (Also arXiv:hep-th/9808042)
[5] Dirk Kreimer and Karen Yeats, An Étude in nonlinear Dyson-Schwinger Equations. Nucl. Phys. B Proc. Suppl., 160, (2006), 116-121. (Also arXiv:hep-th/0605096.)
[6] Dirk Kreimer and Karen Yeats, Recursion and Growth Estimates in Renormalizable Quantum Field Theory. arXiv:hep-th/0612179.

