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Unfolding some recursive equations

Lets get our intuition going

X = I + xB+(X2)

What does this count?

X = I + xB+(X3)

What does this count?

X = I − xB+

(

1

X

)

What does this count?
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Answers

X = I + xB+(X2)

counts computer science binary trees (separate slots
for left and right children).

X = I + xB+(X3)

counts ternary trees with separate slots for left, middle,
and right children.

X = I − xB+

(

1

X

)

counts plane rooted trees.
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Dyson-Schwinger equations

combinatorially

As the simple tree examples, or systems

Xr(x) = I −
∑

k≥1

xkpr(k)Bk,r
+ (Xr(x)Q(x)k)

where Q(x) =
∏

Xr(x)sr and r runs over the different
external leg structures.

Example: QED
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Dyson-Schwinger equations analytically

Example from Broadhurst and Kreimer [3].

X(x) = I − xB+

(

1

X(x)

)

.

along with

F (ρ) =
1

q2

∫

d4k
k · q

(k2)1+ρ(k + q)2
− · · ·

∣

∣

∣

∣

q2=µ2

gives (X 7→ G, B+ 7→ F )

G(x, L) = 1− x

q2

∫

d4k
k · q

k2G(x, log k2)(k + q)2

− · · · |q2=µ2

where L = log(q2/µ2). The (analytic) Dyson-
Schwinger equation for a bit of massless Yukawa theory.
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Dyson-Schwinger equations physically

Equations of motion, analogous to the classical
differential equations of motion.

By expanding in the coupling constant Dyson-
Schwinger equations give perturbation theory.

But Dyson-Schwinger equations also contain
non-perturbative information if we can extract it.
Broadhurst and Kreimer [3] solved

G(x, L) = 1− x

q2

∫

d4k
k · q

k2G(x, log k2)(k + q)2

− · · · |q2=µ2

where L = log(q2/µ2) parametrically with

G(x, L) =

√
x

exp(p2)erfc(p)
q2 = µ2

(

erfcp

erfcp0

)1/2

Other physical perspectives: http://web.mit.

edu/redingtn/www/netadv/Xdysonschw.html
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Dyson-Schwinger equations and B+

The key is B+.

All the Hopf algebras we’re interested in are
generated by one or more B+ and so are the solutions
of Dyson-Schwinger equations or quotients thereof.

B+ is a 1-cocycle

∆B+ = (id ⊗ B+)∆ + B+ ⊗ I

A subpiece comes from the branches, or is the whole
thing. Unique decomposition.

(Hrt, B+) is universal for Hopf algebras with a
1-cocycle. Connes, Kreimer: [4].
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B+ and the universal law

The 1-cocycle property is the cohomological way to
say unique decomposition.

Rooted trees are nice due to the unique
decomposition of a tree into its root and the forest of its
subtrees: B+. For unlabelled trees, T(x) =

∑

t(n)xn,

T(x) = x exp

(

∑

m≥1

T(xm)/m

)

.

Which by Pólya’s classical analysis gives the
asymptotics

t(n) ∼ Cρ−nn−3/2

Asymptotics of the form Cρ−nn−3/2 are ubiquitous
for classes of rooted trees with recursive definitions,
hence the term universal law.
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Operators giving the universal law

How ubiquitous? Let O be the set of operators on
power series built out of

1. E(x, ·) such that

(a) E(x, y) has nonnegative coefficients and zero
constant term,

(b) E(a, b) < ∞ ⇒ ∃ǫ > 0,E(a + ǫ, b + ǫ) < ∞,
(c) ∃R > 0, [xiyj]E(x, y) ≤ Ri+j.

2. MSetM and SeqM for all M ⊆ Z
>0.

3. DCycleM and CycleM for
∑

m∈M 1/m = ∞ or M
finite.

using scalar multiplication from R
≥0, addition,

multiplication, and composition, and where if MSetM ,
DCycleM , or CycleM appear then scalars and
coefficients of E must be integers.
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Theorem 1. [Bell, Burris, – [1]] Let Θ ∈ O such

that

• Θ is nonlinear

• [xn]Θ(A(x)) depends only on [xi]A(x) for i < n.

Let A(x) be a power series

• with nonnegative coefficients

• with zero constant term

• which diverges at its radius of convergence

• if MSetM , DCycleM , or CycleM appear in Θ then

A(x) has integer coefficients.

Then there is a unique T(x) satisfying

T(x) = A(x) + Θ(T)(x).

The coefficients of T satisfy the universal law on their

support.
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B+ and the first recursion

For an analytic Dyson-Schwinger equation write

G(x, L) =
∑

γk(x)Lk γk =
∑

j≥k

γk,jx
j

The Hochschild closedness of B+ is what permits
us to rewrite the linearized coproduct which along with
S ⋆ Y gives the recursion ([5])

γk(x) =
1

k
γ1(x)(1 + rx∂x)γk−1(x)
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B+ and the second recursion

Again

G(x, L) =
∑

γk(x)Lk γk =
∑

j≥k

γk,jx
j

The properties of B+ don’t care about
connectedness which permits us to modify the
primitives of the theory to

• reduce to one insertion place; univariate Mellin
transforms.

• take away higher order behaviour of Mellin
transforms; geometric series Mellin transforms.

which along with the other recursion gives ([6])

γ1,n = p(n) +

n−1
∑

j=1

(−rj − 1)γ1,jγ1,n−j
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B+ and the growth of γ1

γ1,n = p(n) +

n−1
∑

j=1

(−rj − 1)γ1,jγ1,n−j

is what we were able to analyze to show that the
primitives determine the growth of the whole theory.

In particular Lipatov bounds γ1,n ≤ cnn! carry over.
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B+ and sub Hopf algebras

Today’s punchline, solutions to Dyson-Schwinger
equations are sub Hopf algebras. Bergbauer, Kreimer
[2].

In the example

X = I + xB+(X2)
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The sub Hopf algebra result

Let Bdn
+ be Hochschild 1-cocycles. Consider

X = I +
∑

xnwnBdn
+ (Xn+1)

write X =
∑

xncn. Then the Dyson-Schwinger
equation has a unique solution

cn =
∑

wmBdm
+

∑

k1+···+km=n−m
ki≥0

ck1
· · · ckm+1

and the cn generate a sub Hopf algebra

∆cn =

n
∑

k=0

Pn
k ⊗ ck

where the Pn
k are homogeneous polynomials of degree

n − k in the ci, specifically

Pn
k =

∑

ℓ1+···+ℓk+1

cℓ1 · · · cℓk+1

14

The role of B+ for the sub Hopf algebras

Bergbauer and Kreimer [2] give a very natural
operadic proof and an elementary proof consisting of a
triple induction.

The inductive proof has the advantage of showing
explicitly the use of the Hochschild 1-cocycle property
of B+ and that no deep facts are needed.
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