Dyson-Schwinger equations I

Karen Yeats Simon Fraser University

> June 17, 2010 les Houches

B_+ for trees

In the Hopf algebra of rooted trees $B_+(F)$ constructs a tree by adding a new root with children the roots of each tree from the forest F. For example

$$B+(1 \wedge \cdot) = 1$$

 B_+ in rooted trees is a Hochschild 1-cocycle,

$$\Delta B_+ = (\mathrm{id} \otimes B_+) \Delta + B_+ \otimes \mathbb{I}.$$

This 1-cocycle property is key

B_+ for graphs

In the Hopf algebra of divergent 1PI Feynman graphs from a given theory, write B^{γ}_{+} for insertion into the primitive graph γ .

We want this to be a 1-cocycle too. Two things can go wrong.

Simple cases are just trees

In the simplest cases a 1PI Feynman graph can be uniquely represented by a rooted tree with labels on each vertex corresponding <u>just</u> to the associated subdivergence.

In such cases B^{γ}_{+} is automatically a 1-cocycle.

Overlapping divergences

In general there are many possible ways to insert one graph into another so the tree must also contain the information of which insertion place to use.

The hairy coefficient

We can fix this by making the coefficient hairy. For γ primitive

$$B^{\gamma}_{+}(X) = \sum_{\substack{\Gamma \in \mathcal{H} \\ \Gamma \text{ connected}}} \frac{\mathbf{bij}(\gamma, X, \Gamma)}{|X|_{\vee}} \frac{1}{\max f(\Gamma)} \frac{1}{(\gamma|X)} \Gamma$$

 $\max(\Gamma)$: number of insertion trees for Γ ,

 $|X|_{\vee}$: number of graphs from permuting the external edges of X,

- **bij** (γ, X, Γ) : number of bijections of the external edges of X with an insertion place of γ giving Γ .
 - $(\gamma|X)$: number of insertion places for X in γ .

The coefficient assures that we do not double count graphs which can be made in more than one way.

But even more can go wrong

This makes it impossible for every B^{γ}_{+} to be a 1-cocycle.

ìn & m Jm) so there is a mit ΔB_{t} (~~(1)) $(\widehat{B}_{+}^{n}\otimes 1 + (id\otimes \widehat{B}_{+}^{n})\Delta)(mF)$ but not in

Saved by Ward

Recall van Suijlekom's Hopf ideal I. Then $\sum_{|\gamma|=k, \operatorname{res}\gamma=r} B^{\gamma}_{+}$ is a 1-cocycle in \mathcal{H}/I .

Unfolding some recursive equations

Lets get our intuition going in the Hopf algebra of rooted trees

$$X = \mathbb{I} + xB_+(X^2)$$

What does this count?

$$X = i \underbrace{1}_{+} + x \cdot + x^{2}(21) + x^{3}(\wedge + 4 \underbrace{1}) + x^{4}(8 \underbrace{1}_{+} + 4 \bigwedge_{+} + 2 \bigwedge_{+} + \dots$$

binny trees -> computer science binary trees (district left and left and right dividen)
and ten holget right dividen)

$$X = \mathbb{I} + xB_+(X^3)$$

What does this count?

$$X = \mathbb{I} - xB_+\left(\frac{1}{X}\right)$$

What does this count?

$$X = 1 - x \cdot - x^{2} - x^{3} (\Lambda + 1) - x^{4} (\Lambda + 2\Lambda + \lambda + 4)$$

-

Combinatorial Dyson-Schwinger equations

Back to the Hopf algebra of 1PI divergent Feynman graphs in a given theory. The combinatorial Dyson-Schwinger equation is

$$X(x) = \mathbb{I} \pm \sum_{k \ge 1} x^k B^k_+(XQ^k).$$
 k is the loop order we're insertion we're insertion with the insertion of the ins

For systems

$$X^{\widehat{r}}(x) = \mathbb{I} \pm \sum_{k \ge 1} x^k B^{k,r}_+(X^r Q^k).$$

where
$$Q = \left(\frac{(X^v)^2}{\prod_{i=1}^n (X^{e_i})^{m_i}}\right)^{1/(\operatorname{val}(v)-2)}$$
 in \mathcal{H} is van Suijlekom discussed.
Walkers

For example

(Broadhurst and Kreimer; a bit of massless Yukawa theory).

Analytic Dyson-Schwinger equations

Analytic Dyson-Schwinger equations are the result of applying the Feynman rules to combinatorial Dyson-Schwinger equations. We renormalize by subtracting at fixed values of the external momenta.

This has the same recursive structure as the combinatorial equation.

The Mellin transform of the primitive

 $F_{\gamma}(\rho_1,\ldots,\rho_n)$

Disentangling the analytic part

We had

$$G(x,L) = 1 - \frac{x}{q^2} \int d^4k \frac{k \cdot q}{k^2 G(x,\log k^2)(k+q)^2} - \cdots \Big|_{q^2 = \mu^2}$$

Rewrite using the usual tricks

• plug in the Ansatz $G(x, L) = \sum \gamma_k(x)L^k = \left| -\sum \gamma_k L^k \right|$

• use
$$\partial_{\rho}^k x^{-\rho}|_{\rho=0} = (-1)^k \log^k(x)$$

• switch the order of \int and ∂

$$\sum_{n \ge 1} x_n L^n = \frac{x}{q^2} \int_{0}^{q^4} \frac{k \cdot q}{k^2 (1 - \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (\log k^2)^n) (k \cdot q)^2} = \frac{x}{q^2 - \mu^2}$$
$$= \frac{x}{q^2} \int_{0}^{q^4} \frac{k \cdot q}{k^2 (k \cdot q)^2} \sum_{j=1}^{\infty} (\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (\log k^2)^n)^j - \dots |q^2 - \mu^2|$$
$$= \frac{x}{q^2 - \mu^2}$$

K71

$$= \frac{x}{t^{2}} \left(\lambda^{4} k \frac{k \cdot q}{(t^{2} \cdot q)^{2}} \sum_{m} \sum_{j_{1} \neq \dots \neq j_{n} \neq m} \chi_{j_{n}} \chi_{j_{n}} \left(\log k^{2} \right)^{m} - \dots \right|_{q^{2} \neq n}$$

$$= \frac{x}{q^{2}} \left(\lambda^{4} k \frac{k \cdot q}{k^{2} (k + q)^{2}} \sum_{j_{1} \neq \dots \neq j_{n} \neq m} \chi_{j_{n}} \chi_{$$

$$\gamma \cdot L = x(1 - \gamma \cdot \partial_{-\rho})^{-1} (e^{-L\rho} - 1)F(\rho) \Big|_{\rho=0}$$

where $\gamma \cdot U = \sum \gamma_k U^k$.

The example all together

$$X(x) = \mathbb{I} - xB_{+} \left(\frac{1}{X(x)}\right),$$

$$F(\rho) = \frac{1}{q^{2}} \int d^{4}k \frac{k \cdot q}{(k^{2})^{1+\rho}(k+q)^{2}}\Big|_{q=1}.$$

Combine to get

$$G(x,L) = 1 - \frac{x}{q^2} \int d^4k \frac{k \cdot q}{k^2 G(x,\log k^2)(k+q)^2} - \dots \Big|_{q^2 = \mu^2}$$

where $L = \log(q^2/\mu^2)$. Rearrange to

$$\gamma \cdot L = x(1 - \gamma \cdot \partial_{-\rho})^{-1} (e^{-L\rho} - 1) F(\rho) \bigg|_{\rho=0}$$

where $\gamma \cdot U = \sum \gamma_k U^k$.

Dyson-Schwinger equations – our setup

The combinatorial Dyson-Schwinger equation is

$$X(x) = \mathbb{I} - \text{sign}(s) \sum_{k \ge 1} \sum_{i=0}^{t_k} x^k B_+^{k,i}(XQ^k).$$

where $Q(x) = X(x)^{-s}$. Associate with each $B^{k,i}_+$ a Mellin transform $F^{k,i}(\rho_1,\ldots,\rho_n)$.

Then the analytic Dyson-Schwinger equation is

$$G(x,L) = 1 - \operatorname{sign}(s) \sum_{k \ge 1} \sum_{i=0}^{t_k} x^k G(x,\partial_{-\rho_1})^{-\operatorname{sign}(s)} \cdots G(x,\partial_{-\rho_{n_k}})^{-\operatorname{sign}(s)}$$
$$(e^{-L(\rho_1 + \dots + \rho_{n_k})} - 1) F^{k,i}(\rho_1,\dots,\rho_{n_k}) \Big|_{\rho_1 = \dots = \rho_{n_k} = 0}$$

where $n_k = \operatorname{sign}(s)(sk-1)$.

Systems of equation are similar but messier.

2-13

Reduction to one insertion place

Use new primitives to account for the error when only inserting in one insertion place. For example $\beta_{i}^{\vee}(1) = \gamma$

difference
$$\frac{1}{8} - \frac{1}{9} - \frac{1}{8} - \frac{1}{9} - \frac{1$$

Check primitivity

Return to rooted trees

In general the insertions we need aren't possible.

Let G be a 1PI Feynman graph; let F(G) be the forest of insertion trees which give G.

F is an injective Hopf algebra morphism.

Reduction to symmetric insertion

Use R_+ for red insertion

Switch from B_+ to R_+ by at each loop order defining a new primitive which is the difference between what we have already built with R_+ and what we had originally.

+-

We had

$$\frac{1}{def} = \frac{1}{15} A = \frac{1}{2} a_{x} x^{x} \text{ is a hormal}$$

series then $[x^{k}]A = a_{k}$

$$q_{n} = -\text{sign}(s)[x^{n}]X + \text{sign}(s)\sum_{k=1}^{n-1} R^{q_{k}}([x^{n-k}]XQ^{k})$$
$$X = 1 - \text{sign}(s_{r})\sum_{k\geq 1} x^{k} R^{q_{k}}_{+}(XQ^{k}).$$

Each q_n is primitive, inductively.

Consequence

Symmetric insertion means a single insertion place which means univariate Mellin transforms.

So the Dyson-Schwinger equation simplifies from

$$G(x,L) = 1 - \operatorname{sign}(s) \sum_{k \ge 1} \sum_{i=0}^{t_k} x^k G(x,\partial_{-\rho_1})^{-\operatorname{sign}(s)} \cdots G(x,\partial_{-\rho_{n_k}})^{-\operatorname{sign}(s)}$$
$$(e^{-L(\rho_1 + \dots + \rho_{n_k})} - 1) F^{k,i}(\rho_1,\dots,\rho_{n_k}) \Big|_{\rho_1 = \dots = \rho_{n_k} = 0}$$

where $n_k = \operatorname{sign}(s)(sk-1)$, to

$$G(x,L) = 1 - \operatorname{sign}(s) \sum_{k \ge 1} \left. \sum_{i \not j} x^k G(x,\partial_{-\rho})^{1-sk} (e^{-L(\rho)} - 1) F^{k, \not j}(\rho) \right|_{\rho=0}$$

Bonus slide – symmetric insertion

For the purposes of symmetric insertion define use the Mellin transform

$$F_p(\rho) = (q^2)^{\rho} \int \operatorname{Int}_p(q^2) \left(\frac{1}{|p|} \sum_{i=1}^{|p|} (k_i^2)^{-\rho} \right) \prod_{i=1}^{|p|} d^4 k_i,$$

where $\operatorname{Int}_p(q^2)$ is the integrand determined by p. We'll renormalize by subtraction at $q^2 = \mu^2$; let

$$\operatorname{Int}_p^-(q^2) = \operatorname{Int}_p(q^2) - \operatorname{Int}_p(\mu^2).$$

So for symmetric insertion we have

$$\phi_R(R^p_+(X))(q^2/\mu^2) = \int \operatorname{Int}_p^-(q^2) \left(\frac{1}{|p|} \sum_{i=1}^{|p|} \phi_R(X)(-k_i^2/\mu^2)\right) \prod_{i=1}^{|p|} d^4k_i.$$