Dyson-Schwinger equations I

Karen Yeats
Simon Fraser University

June 17, 2010
les Houches

B_{+}for trees

In the Hopf algebra of rooted trees $B_{+}(F)$ constructs a tree by adding a new root with children the roots of each tree from the forest F.

For example

$$
B+(d, A)=
$$

B_{+}in rooted trees is a Hochschild 1-cocycle,

$$
\Delta B_{+}=\left(\mathrm{id} \otimes B_{+}\right) \Delta+B_{+} \otimes \mathbb{I} \cdot
$$

This 1-cocycle property is key

B_{+}for graphs

In the Hopf algebra of divergent 1PI Feynman graphs from a given theory, write B_{+}^{γ} for insertion into the primitive graph γ.

For example

We want this to be a 1-cocycle too. Two things can go wrong.

Simple cases are just trees

In the simplest cases a 1PI Feynman graph can be uniquely represented by a rooted tree with labels on each vertex corresponding just to the associated subdivergence.

In such cases B_{+}^{γ} is automatically a 1-cocycle.

Overlapping divergences
In general there are many possible ways to insert one graph into another so the tree must also contain the information of which insertion place to use.

overlapping subdivergances

$=2-(D-$

The hairy coefficient

We can fix this by making the coefficient hairy. For γ primitive

$$
B_{+}^{\gamma}(X)=\sum_{\substack{\Gamma \in \mathcal{H} \\ \Gamma \text { connected }}} \frac{\mathbf{b i j}(\gamma, X, \Gamma)}{|X|_{\vee}} \frac{1}{\operatorname{maxf}(\Gamma)} \frac{1}{(\gamma \mid X)} \Gamma
$$

$\operatorname{maxf}(\Gamma)$: number of insertion trees for Γ,
$|X|_{\mathrm{v}}$: number of graphs from permuting the external edges of X, $\mathbf{b i j}(\gamma, X, \Gamma)$: number of bijections of the external edges of X with an insertion place of γ giving Γ.
$(\gamma \mid X)$: number of insertion places for X in γ.

The coefficient assures that we do not double count graphs which can be made in more than one way.

But even more can go wrong can be made by inserting

into uru
a- by inserting

into

This makes it impossible for every B_{+}^{γ} to be a 1-cocycle.
so the is a $\left.w\left\langle t_{n}^{n} \otimes \cdots\right\}^{n}\right\}_{n}$ in

$$
\Delta B_{+}^{m(9 n}(\sim\{[\{)
$$

Saved by Ward

Recall van Suijlekom's Hopf ideal I. Then $\sum_{|\gamma|=k, \text { res } \gamma=r} B_{+}^{\gamma}$ is a 1 -cocycle in \mathcal{H} / I.

Unfolding some recursive equations
Lets get our intuition going in the Hopf algebra of rooted trees

$$
X=\mathbb{I}+x B_{+}\left(X^{2}\right)
$$

What does this count?

$$
\begin{aligned}
X= & 11+x \cdot+x^{2}(21)+x^{3}(\Lambda+4\{)+ \\
& +x^{4}(8 ;+4 \wedge+2 \lambda)+\ldots
\end{aligned}
$$

binary trees \rightarrow computer science binary trees (distrait and then Gorget left and right duildre)

$$
\wedge: \wedge \wedge<\wedge
$$

$$
X=\mathbb{I}+x B_{+}\left(X^{3}\right)
$$

What does this count?

$$
X=\mathbb{I}-x B_{+}\left(\frac{1}{X}\right)
$$

What does this count?

$$
\left.X=\mathbb{1}-x \cdot-x^{2}\right\}-x^{3}(\Lambda+1)-x^{4}(1+2 \wedge+\lambda+q)
$$

counts plane trees then forget

Combinatorial Dyson-Schwinger equations

Back to the Hopf algebra of 1PI divergent Feynman graphs in a given theory. The combinatorial Dyson-Schwinger equation is

$$
\begin{array}{ll}
\frac{X(x)=\mathbb{I} \pm \sum_{k \geq 1} x^{k} B_{+}^{k}\left(X Q^{k}\right) .}{k} \begin{array}{l}
\text { is the } \\
\text { loop order } \\
\text { we're ingerti-g } \\
\text { into. }
\end{array}
\end{array}
$$

For systems

$$
X^{(r}(x)=\mathbb{I} \pm \sum_{k \geq 1} x^{k} B_{+}^{k, r}\left(X^{r} \underline{Q}^{k}\right)
$$

where $Q=(\underbrace{\frac{\left(X^{v}\right)^{2}}{\prod_{i=1}^{n}\left(X^{e}\right)^{m_{i}}}})^{1 /(\operatorname{val}(v)-2)}$ in \mathcal{H} (I Qs van Suijlekom discussed. Walters Y_{V}

For example
(Broadhurst and Kreimer; a bit of massless Yukawa theory)

not

$$
\begin{array}{r}
x=1-x \stackrel{\substack{3}}{x}\left(\frac{1}{x}\right)=1-\times B_{+}(X Q) \\
Q=X^{-2}
\end{array}
$$

Analytic Dyson-Schwinger equations
Analytic Dyson-Schwinger equations are the result of applying the Feynman rules to combinatorial Dyson-Schwinger equations. We renormalize by subtracting at fixed values of the external momenta.

1. The recursive structure of the DSE takes of the recursive structure of renormalize
2. Te counting var (x) becomes the coupling constant,
3. These ac the DSt of physics.
4. New re also have variables from the external nerveta
5. In te one scale cal let $L=\log \left(q^{2} / \mu^{2}\right)$

Continuing the example

In the Broadhurst-Kreimer Yukawa example

$$
G(x, L)=1-\frac{\cong}{\frac{x}{q^{2}}} \int d^{4} k \frac{k \cdot q}{k^{2} G\left(x, \log k^{2}\right)(k+q)} 2 \underbrace{}_{q^{2}=\mu^{2}}
$$

where $L=\log \left(q^{2} / \mu^{2}\right)$.

$$
\begin{aligned}
& 9 \\
& B_{4}
\end{aligned}
$$

This has the same recursive structure as the combinatorial equation.

The Mellin transform of the primitive
For a primine graph γ
Get a formal integral expression
Regularize by raising prop-gatos to $1+p_{i}$ analytic regulerizathe
set external to 1

Call $\quad F_{\gamma}\left(\rho_{1} \cdots \rho_{k}\right)$

$$
F_{\gamma}\left(\rho_{1}, \ldots, \rho_{n}\right)
$$

Disentangling the analytic part
We had

$$
G(x, L)=1-\frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2} G\left(x, \log k^{2}\right)(k+q)^{2}}-\left.\cdots\right|_{q^{2}=\mu^{2}}
$$

Rewrite using the usual tricks

- plug in the Ansatz $G(x, L)=\sum \gamma_{k}(x) L^{k}=1-\sum_{k \geqslant 1} \gamma_{k} L^{k}$
- use $\left.\partial_{\rho}^{k} x^{-\rho}\right|_{\rho=0}=(-1)^{k} \log ^{k}(x)$
- switch the order of \int and ∂

$$
\begin{aligned}
\sum_{n \geq 1} \gamma_{n} L^{r} & =\frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2}\left(1-\sum_{n} \gamma_{n}\left(\log k^{2}\right)^{n}\right)(k+q)^{2}-\left.\cdots\right|_{q^{2}=\mu^{2}}} \\
& =\frac{x}{q^{2}} \int^{4} k \frac{k \cdot q}{k^{2}(k+q)^{2}} \sum_{j-9}\left(\sum_{n} \gamma_{n}\left(\log k^{2}\right)^{n}\right)^{j}-\left.\ldots\right|_{q^{2}=\mu^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2}(k+q)^{2}} \sum_{m} \sum_{\left.j_{i}+\ldots\right)_{s}=m} \gamma_{j,} \ldots \gamma_{j s}\left(\log k^{2}\right)^{m}-\left.\ldots\right|_{q^{2}=\mu^{2}} \\
& =\frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2}(k+q)^{2}} \sum_{\sum_{j, \cdots+j_{s}=m} \gamma_{j,} \ldots \gamma_{j s}(-1)^{m} \partial_{\rho}^{m} k^{-\rho}-\left.\left.\ldots\right|_{q^{2}=q}\right|_{\rho=0} \mid} \\
& =\left.\underbrace{\frac{x}{q^{2}} \sum_{j_{1}+\ldots+j s=m}^{\sum_{j_{1}} \ldots \gamma_{j s}(-1)^{m} j_{\rho}^{m}} \underbrace{\sum_{\rho=0}}_{\text {to be } F_{\gamma}(\rho)} \int^{4} k \frac{k \cdot q}{\left(k^{2}\right)^{1+p}(k+q)^{2}}-\cdots q_{q^{2}-\mu^{2}}}_{\text {the geometric series }}\right|_{i} \\
& =x\left(\frac{1}{1-\sum \gamma_{n} \partial_{\rho}^{n}}\right)\left(e^{-\log \frac{\alpha^{2}}{\mu=\rho}}-1\right) F_{\gamma}(\rho)
\end{aligned}
$$

$$
\gamma \cdot L=x\left(1-\gamma \cdot \partial_{-\rho}\right)-\left.\left(\left(e^{-L \rho}-1\right) F\right)(\rho)\right|_{\rho=0}
$$

where $\gamma \cdot U=\sum \gamma_{k} U^{k}$.

The example all together

$$
\begin{gathered}
X(x)=\mathbb{I}-x B_{+} \quad\left(\frac{1}{X(x)}\right), \\
F(\rho)=\left.\frac{1}{q^{2}} \int d^{4} k \frac{k \cdot q}{\left(k^{2}\right)^{1+\rho}(k+q)^{2}}\right|_{q=1} .
\end{gathered}
$$

Combine to get

$$
G(x, L)=1-\frac{x}{q^{2}} \int d^{4} k \frac{k \cdot q}{k^{2} G\left(x, \log k^{2}\right)(k+q)^{2}}-\left.\cdots\right|_{q^{2}=\mu^{2}}
$$

where $L=\log \left(q^{2} / \mu^{2}\right)$. Rearrange to

$$
\gamma \cdot L=\left.x\left(1-\gamma \cdot \partial_{-\rho}\right)^{-1}\left(e^{-L \rho}-1\right) F(\rho)\right|_{\rho=0}
$$

where $\gamma \cdot U=\sum \gamma_{k} U^{k}$.

Dyson-Schwinger equations - our setup

The combinatorial Dyson-Schwinger equation is

$$
X(x)=\mathbb{I}-\operatorname{sign}(s) \sum_{k \geq 1} \sum_{i=0}^{t_{k}} x^{k} B_{+}^{k, i}\left(X Q^{k}\right)
$$

where $Q(x)=X(x)^{-s}$. Associate with each $B_{+}^{k, i}$ a Mellin transform

$$
F^{k, i}\left(\rho_{1}, \ldots, \rho_{n}\right)
$$

Then the analytic Dyson-Schwinger equation is

$$
\begin{gathered}
G(x, L)=1-\operatorname{sign}(s) \sum_{k \geq 1} \sum_{i=0}^{t_{k}} x^{k} G\left(x, \partial_{-\rho_{1}}\right)^{-\operatorname{sign}(s)} \cdots G\left(x, \partial_{-\rho_{n_{k}}}\right)^{-\operatorname{sign}(s)} \\
\left.\left(e^{-L\left(\rho_{1}+\cdots+\rho_{n_{k}}\right)}-1\right) F^{k, i}\left(\rho_{1}, \ldots, \rho_{n_{k}}\right)\right|_{\rho_{1}=\cdots=\rho_{n_{k}}=0}
\end{gathered}
$$

where $n_{k}=\operatorname{sign}(s)(s k-1)$.
Systems of equation are similar but messier.

Reduction to one insertion place
Use new primitives to account for the error when only inserting in one insertion place. For example

$$
\begin{aligned}
& X=1-x B_{+}^{\frac{1}{2}-O-}\left(\frac{1}{X^{2}}\right) \\
& B_{+}^{\gamma}(\mathbb{1})=\gamma \\
& x=\mathbb{1}-x \frac{1}{2}-0-x^{2} \frac{1}{2}-\Omega-x^{3}\left(\frac{1}{8}-\hat{Q}+\frac{1}{2}-\varnothing-\right. \\
& \left.\begin{array}{l}
\text { only ingest } \\
\text { ere } \\
\hline
\end{array}+\frac{1}{4}-Q^{-}\right)-\ldots \\
& X=1-x B_{+}^{\frac{1}{2}-\left(Q^{2}\right)}\left(\frac{1}{x^{2}}\right)=1-\frac{x}{2}-0-\frac{x}{2}-Q- \\
& -x^{3}\left(\frac{1}{2}-\infty+\frac{3}{8}-2\right)-\cdots
\end{aligned}
$$

difference $\frac{1}{8}-\theta^{2}-\frac{1}{8}-(2)$

$$
\begin{aligned}
\Delta^{\prime}\left(\frac{1}{8}-Q-\frac{1}{8}-Q\right)= & \frac{1}{4}-\theta-\otimes-Q+\frac{1}{8}-\theta-\theta \theta-0- \\
& -\frac{1}{4}-\theta-\otimes-Q-\frac{1}{8}-a-a \otimes \theta \\
& =0
\end{aligned}
$$

So $q_{3}=\frac{1}{8}-\left(\hat{2}-\frac{1}{8}-\left(\theta^{2}\right.\right.$ is primitive and here a valid superscript hor b_{+}

$$
\begin{aligned}
& X=1-\times B_{+}^{-Q}(X Q)-x^{3} B_{+}^{q_{3}}\left(X Q^{3}\right) \quad Q=X^{-3} \\
& q_{1}=\frac{1}{2}-\bigcirc-\quad q_{2}=0 \quad q_{3}=\frac{1}{8} _ \text {ค }-\frac{1}{8} _ \text {に }
\end{aligned}
$$

Check primitivity

Return to rooted trees
In general the insertions we need aren't possible.
Let G be a 1PI Feynman graph; let $F(G)$ be the forest of insertion trees which give G.
F is an injective Hoof algebra morphism.

Extend this situation by coloring edges to erode different rule

- red ingestion (symmetric ingechor)
- black insertion (usu. insertion)
same algebraic structure carries over

Reduction to symmetric insertion
Use R_{+}for red insertion
Switch from B_{+}to R_{+}by at each loop order defining a new primitive which is the difference between what we have already built with R_{+}and what we had originally.

We had

$$
\begin{gathered}
X(x)=\mathbb{I}-\operatorname{sign}(s) \sum_{k \geq 1} x^{k} B_{+}^{k, k}\left(X Q^{k}\right) . \\
X=\mathbb{1}-X C_{1}-\ldots \\
X(x)=1-\operatorname{sgn}(s) R_{+}^{q_{1}}\left(X Q^{k}\right)-\ldots \\
q_{2}=\left[x^{2}\right] X-\left[x^{2}\right]\left(-\operatorname{sgn}(s) R_{+}^{q_{1}}\left(X Q^{k}\right)\right) \quad \text { my next primitive. }
\end{gathered}
$$

def If $A=\sum a_{n} x^{n}$ is a formal series then $\left[x^{k}\right] A=a_{k}$

$$
\begin{aligned}
q_{n} & =-\operatorname{sign}(s)\left[x^{n}\right] X+\operatorname{sign}(s) \sum_{k=1}^{n-1} R_{\neq}^{q_{k}}\left(\left[\overline{x^{n-k}}\right] X Q^{k}\right) \\
X & =1-\operatorname{sign}\left(s_{r}\right) \sum_{k \geq 1} x^{k} R_{+}^{q_{k}}\left(X Q^{k}\right)
\end{aligned}
$$

Each q_{n} is primitive, inductively.

Consequence

Symmetric insertion means a single insertion place which means univariate Mellin transforms.

So the Dyson-Schwinger equation simplifies from

$$
\begin{gathered}
G(x, L)=1-\operatorname{sign}(s) \sum_{k \geq 1} \sum_{i=0}^{t_{k}} x^{k} G\left(x, \partial_{-\rho_{1}}\right)^{-\operatorname{sign}(s)} \cdots G\left(x, \partial_{-\rho_{n_{k}}}\right)^{-\operatorname{sign}(s)} \\
\left.\left(e^{-L\left(\rho_{1}+\cdots+\rho_{n_{k}}\right)}-1\right) F^{k, i}\left(\rho_{1}, \ldots, \rho_{n_{k}}\right)\right|_{\rho_{1}=\cdots=\rho_{n_{k}}=0}
\end{gathered}
$$

where $n_{k}=\operatorname{sign}(s)(s k-1)$, to

$$
G(x, L)=1-\left.\operatorname{sign}(s) \sum_{k \geq 1} x^{k} G\left(x, \partial_{-\rho}\right)^{1-s k}\left(e^{-L(\rho)}-1\right) F^{k, y}(\rho)\right|_{\rho=0}
$$

Bonus slide - symmetric insertion

For the purposes of symmetric insertion define use the Mellin transform

$$
F_{p}(\rho)=\left(q^{2}\right)^{\rho} \int \operatorname{Int}_{p}\left(q^{2}\right)\left(\frac{1}{|p|} \sum_{i=1}^{|p|}\left(k_{i}^{2}\right)^{-\rho}\right) \prod_{i=1}^{|p|} d^{4} k_{i}
$$

where $\operatorname{Int}_{p}\left(q^{2}\right)$ is the integrand determined by p.
We'll renormalize by subtraction at $q^{2}=\mu^{2}$; let

$$
\operatorname{Int}_{p}^{-}\left(q^{2}\right)=\operatorname{Int}_{p}\left(q^{2}\right)-\operatorname{Int}_{p}\left(\mu^{2}\right)
$$

So for symmetric insertion we have

$$
\phi_{R}\left(R_{+}^{p}(X)\right)\left(q^{2} / \mu^{2}\right)=\int \operatorname{Int}_{p}^{-}\left(q^{2}\right)\left(\frac{1}{|p|} \sum_{i=1}^{|p|} \phi_{R}(X)\left(-k_{i}^{2} / \mu^{2}\right)\right) \prod_{i=1}^{|p|} d^{4} k_{i}
$$

