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We follow [1, Section 9.2], with some restrictions:

• we work in C2 (since if we can generalise to d = 2, we can generalise to any finite dimension);

• we assume F = G/H is rational, ie F ∈ C(x, y).

Then the Cauchy integral formula becomes

Ars =
1

(2πi)2

∫
T

F (x, y)

xr+1ys+1
dxdy

where T = {(x, y) ∈ C2 : |x| = ε1, |y| = ε2} for ε1, ε2 sufficiently small.

Theorem 1. Let F = G/H ∈ C(x, y) and fix ∆∗ = (r∗, s∗) ∈ R2
+. Assume that h∗ : V→ RR, the height

function on the singular variety of F , has a unique minimum (x0, y0) which is a smooth point. Then
there is D1 (resp D2) a disc of C centred at x0 (resp y0) such that

ars ∼ f∗(r, s) =
1

(2πi)2

∫
N×D2

F (x, y)

xr+1ys+1
dxdy,

where N = D1

∫
{x ∈ C | |x| = |x0|}. Moreover, there is a holomorphic function φ : D1 → D2 such that

f∗(r, s) =
1

2πi

∫
N

1

xr+1φ(x)s
Res

{
F (x, y)

y
, y = φ(x)

}
dx.

Definition 1. Let H ∈ C[x, y] and V = {(x, y) ∈ C2 | H(x, y) = 0}. A point (x0, y0) ∈ V is smooth if
∇H|(x0,y0) 6= 0.

Example 2. There are two examples.
1. Let H(x, y) = 1 − x − y. Then ∂xH = −1 and ∂yH = −1, so all points of H are smooth. From
another point of view, H is flat everywhere (which we can see part of by looking at the section of H(x, y)
in R, the red line in Figure ??).

Figure 1: The red line is the real portion of the variety of H(x, y) = 1− x− y, which is globally flat

2. Let H(x, y) = (1 + x)x2 + y2. The real variety of H is shown in Figure ??. The non-smooth point
is (0, 0), which is where the curve intersects itself. We could see this in two ways: 1) (0, 0) is a double
point, so ∂x(H)|(0,0) = ∂y(H)|(0,0) = 0; 2) ∂y(H) = 2y, which is only zero if y = 0, and (0, 0) is the only
point of V(H) satisfying this.
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Figure 2: The algebraic curve H(x, y) = (1 + x)x2 + y2

Theorem 3. Let V = {(x, y) ∈ C2 | H(x, y) = 0} be an algebraic curve and (x0, y0) ∈ V be a smooth
point. Then there is a D1 (resp D2), a disc of C centred at x0 (resp y0) and a holomorphic function
φ : D1 → D2 such that

V ∩ (D1 × D2) = {(x, φ(x) | x ∈ D1}.

Proof. First, (x0, y0) is smooth, so at least one of ∂xH|(x0,y0) and ∂yH|(x0,y0) is non-zero. Without loss
of generality, we may assume that ∂hH|(x0,y0) 6= 0.

Now, assume that there exists a function f : D → C with ∀z ∈ ∂D, f(z) 6= 0. Then the claim is that

# of zeroes of f in D =
1

2πi

∫
∂D

∂zf(z)

f(z)
dz.

Indeed, if f has k roots in D, then

f(z) = (z − z1)α1(z − z2)α2 ...(z − zk)αk f̃(z),

where f̃ is non-zero on D. Taking the first derivative, we find

dzf =

k∑
i=1

[
αi(z − z1)α1 ...(z − zi)αi−1...(z − zk)αk f̃(z) + (z − z1)α1 ...(z − zk)αkdzf̃(z)

]
.

Thus,

dzf

f
=

k∑
i=1

[
αi

z − zi
+
dz f̃(z)

f̃(z)

]
.

Taking the integral of this, we take the residue of each summand at zi. Since f̃ is non-zero on D, the
second part of each summand is integrated to zero, and we get

1

2πi

∫
∂D

∂zf(z)

f(z)
dz =

k∑
i=1

αi + 0,

which is the number of zeroes, with multiplicity.
From this, if f has a unique zero in D, z0 say, then the modified integral will allow us to find it:

1

2πi

∫
∂D

z∂zf(z)

f(z)
dz = z0.

Now, fix x = x0 and H(x0, y) = Hx0
(y). We then have Hx0

(y0) = 0 and ∂yH|(x0,y0). Thus Hx0
is

not flat at y0, so there is a neighbourhood of y0 in which Hx0 6= 0. Take this neighbourhood to be D2.
By our previous claim, we know that

1

2πi

∫
∂D2

∂yHx0
(y)

Hx0(y)
dy = 1⇒ 1

2πi

∫
∂D2

y∂yHx0
(y)

Hx0(y)
dy = y0. (1)

Further, H ∈ CC[x, y] tells us that Hx(y) depends continuously on x.
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Now, the function Hx0
(y) is non-zero for all y ∈ ∂D2. By continuity, there must be some neighbour-

hood of x0, call it D1, centred at x0 such that ∀x ∈ D1, Hx(y) 6= 0 ∀y ∈ D2.
So we can replace x0 in Statement 1 by any x ∈ D1, giving

φ(x) =

∫
∂D2

ydyHx(y)

Hx(y)
dy = y ∈ D2.

Fix ∆∗ = (r∗, s∗) ∈ R2
+. Then there is an associated height function on the singular variety of F , or

on its amoeba

h∗ : V→ R, (x, y) 7→ −〈∆∗, (log |x|, log |y|)〉 = −r∗ log |x| − s∗ log |y,
h∗ : Re logV→ R, (x, y) 7→ −r∗ log |x| − s∗ log |y.

Recall that for a function F , amoeba(F ) = Re logV, where V is the singular variety of F . Then the
components B of R2 \ Re logV are the portions of R2 in which F has a Laurent series representation,
and F will have a minimum on ∂B.

Lemma 4. Let h∗ : Re logV→ R be as above. Then h∗ takes its extremal values on ∂Re logV.

Observation 1. We observe that
ars ∼

r+s→∞
(r,s)||∆∗

f∗(r, s)

if and only if xr0y
s
0[ars − f∗(r, s)] = o(1) for r + s→∞ and r/s = r∗/s∗.

Theorem 5 (Restatement of Theorem 1). Let F = G/H ∈ C(x, y) and ∆∗ = (r∗, s∗) ∈ R2
+. Assume

that h∗ : V→ R has a unique critical point (x0, y0) that is smooth. Then there is a disc D1 (resp D2) of
C, centred at x0 (resp y0) such that

ars ∼ f∗(r, s) =
1

(2πi)2

∫
N×D2

F (x, y)

xr+1ys+1
dxdy.

Proof. Since (x0, y0) is a smooth point, at least one of ∂xH|(x0,y0) and ∂yH|(x0,y0) is non-zero. We pick
the y coordinate.

From the Cauchy formula, we know (substituting ω for the integrand)

ars =
1

(2πi)2

∫
T

ω,

where T is a torus passing through x0. From our previous results, we know that we have the discs D1

and D2 centred at x0 and y0 respectively. Let δ2 be the radius of D2.
In Figure 3, we can see D1 and D2 marked in red. In the x-plane, the torus T is the black circle. In

the y-plane, C− = {y ∈ C : |y| = |y0| − δ2} and C+ = {y ∈ C : |y| = |y0| + δ2}, both with positive
orientation in the anti-clockwise direction. Using these two new contours, C±, and the fact that (x0, y0)
is the unique critical point of h∗, we can rewrite the Cauchy integral as

ars =
1

(2iπ)2

∫
|x|=|x0|

x−r−1

[∫
C−
−
∫
C+

]
F (x, y)

ys+1
dydx,

where we abuse notation between the square brackets, meaning the difference of the integrals over C+
and C−. Applying Observation 1, we want to show that

xr0y
s
0

[
ars −

1

(2iπ)2

∫
|x|=|x0|

x−r−1

[∫
C−
−
∫
C+

]
F (x, y)

ys+1
dydx

]
= o(1).

The key observation is that in

1

(2iπ)2

∫
|x|=|x0|

x−r−1
∫
C−

F (x, y)

ys+1
dydx
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Figure 3: A pictorial representation of the integration contours in the proof of Theorem 5.

the inner integral is exponentially small away from x0. This is due to the fact that the radius of
convergence for x 6= x0 is greater than |y0|, since (x0, y0) is the unique minimal point of the singular
variety. This gives ∣∣∣∣∣

∫
C−

F (x, y)

ys+1
dy

∣∣∣∣∣ ≤ C(x)

(|y0|+ ε)s
,

for some ε > 0 and x away from x0. Similarly, the integral over C+ is bounded by the same quantity (up
to a factor dependent on x) for x away from x0.

By substituting this bound into the original integral, and taking a compact K ⊂ {|x| = |x0|} such
that x0 /∈ K, we find ∣∣∣∣∣

∫
K

∫
C±

F (x, y)

xr+1ys+1
dxdy

∣∣∣∣∣ ≤ CK
|x0|r(|y0|+ ε)s

.

We may use a single ε, since by the continuity of the radius of convergence, one exists for all compact
K ⊂ {|x| = |x0|}.

This computation works since r, s both go to infinity. If one were to remain finite while the other
diverged, this would no longer hold. Multiplying by xr0y

s
0, we obtain an expression which is exponentially

small. ∣∣∣∣∣xr0ys0
∫
K

∫
C±

F (x, y)

xr+1ys+1
dxdy

∣∣∣∣∣ ≤ Ck

(
|y0|
|y0|+ ε

)s
.

Thus, the contribution to the iterated integral from the compact subset K of T in the x-plane is
negligible, and the asymptotic estimate is given by the integral over the product N × ∂D2.
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