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MATH 817 ASSIGNMENT 6 SOLUTIONS

Note first that eRe is a ring with multiplicative identity ele = e? = e. Note also that
for any x € eRe, exe = .

Take any = € eJ(R)e. Then z = ere where r € J(R). Let I be the ideal
generated by z in eRe. Take any element xs € [ where s € eRe. J(R) is an ideal
so xs = eres € J(R), so zs is quasiregular in R. Let u be a unit of R such that
(1—xs)u = 1. Then (e —xs)(eue) = eue — xseue = eue — exrsecue = eue — eerseue =
eue — exsue = e(l — xs)ue = ele = e. So all elements of I are quasiregular in eRe,
sox € I C J(eRe). Thus eJ(R)e C J(eRe).

On the other hand let U be a simple right R-module. Then Ue is a right eRe-
module. If Ue # 0 then take ue € Ue, u € U. Then ueR = U by simplicity of U
so ueRe = Ue. Thus Ue is generated by any of its nonzero elements and so it is
also simple. Suppose x € J(eRe). Then = = ere with r € R. x annihilates every
simple right e Re-module so Uex = 0. Thus ex € J(R) so z = exe € eJ(R)e giving
J(eRe) C eJ(R)e.

Let I C J(R) be a right ideal. Let K be another right ideal such that K + I = R.
Then we can write 1 = k+¢ with k € K and ¢ € I. But ¢ is quasiregular so k =1 —1
is a unit. Thus K = R. So I is small.

Let I be small. Take any ¢ € I. Suppose i is not quasiregular. Then K = (1 — i)
is a proper ideal of R but K + I = R which is a contradiction. Thus all elements of
I are quasiregular and so I C J(R).

(a) A —a = X1 —-X"'a). A'a € J(C[G]) hence is quasiregular. Thus A\ — a is a
product of units and hence a unit itself.

(b) G is a basis for C[G] considered as a vector space over C. The elements of S
are distinct and so S is uncountable, but C[G] has a countable basis, thus S is
linearly dependent.

(c) Take a € J(C|G]) and form S as in the previous part. S is linearly dependent

SO
S|
=0
- )\z —a
=1
finding a common denominator we get a polynomial P(a) of degree n — 1 such
that
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Thus P(a) = 0 so a is algebraic over C.

(d) Take a € J(C[G]). By the previous part a is algebraic over C. So there is some
polynomial P over C, such that P(a) = 0. Note that the constant term of P
must be in J(C[G]) since J(C[G]) is an ideal. Thus since C is a field and the
J(C|[G]) is proper, P has zero constant term. So write

0= P(a) 1: ca®Q(a)
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where ) is a polynomial with constant term 1 and ¢ € C ~ {0}. But then
Q(a) = (—z) + 1 for some z € J(C[G]) so Q(a) is a unit and so multiplying on
the right by its inverse we get 0 = ca®, but c is also a unit, so 0 = a*. Thus
J(C[G)) is nil.

Take a € J(C[G]). Thena =Y., ¢;g; for some finite sum. Let H = (g1, ..., gn)-
The ideal Ag generated by a in C[G] has all elements quasiregular (since it is
inside J(C[G])). Thus every element in the the ideal Ay generated by a in C[H|
is quasiregular in C[G]).

Moreover the inverses can be chosen in J(C[H]) because if (1 — ar)u = 1 with
r € C[H], then choose a set S of coset representatives of G/ H with 1 representing
H (transversal) and write u = w38y + - - - + ugsg with u; € C[H] and s; € S. But
then > (1 — ar)u;s; = 1 with (1 — ar)u; € C[H], so by the disjointness of cosets
we see that exactly one s; is nonzero and that one must be 1 representing H,
giving (1 — ar)s; = 1 for some i.

Thus every element in the the ideal Ay generated by a in C[H] is also quasireg-
ular in C[H]. Hence a € Ay C J(C[H]). But by the previous part J(C[H]) is
nil, so a is nilpotent, so J(C[G]) is nil.

Take 0 # a € J(C[G]). Write a = Y ¢,g with at least one ¢, # 0. Then aa* is
nonzero since the coefficient of 1 is ) ¢,é, > 0. But (aa®)* = (a)*a* = aa™
Let 3 = aa*, then 5% = 33* # 0 and (3%)* = 2. Continuing likewise 3% #
0...3% #0. So 8 is not nilpotent.

Take 0 # o € J(C[G]). aa* € J(C[G]) since J(C[G]) is an ideal. By the
previous part this element is not nilpotent, but by the part before J(C[G]) is
nil. Contradiction. Thus J(C[G]) = 0.

By the previous part we know that C[S3] is a quasiregular ring, and since it is a finite
dimensional algebra it is right artinian. Thus C[S3] is wedderburn, and so it must be
a sum of full matrix rings over C. |S3| = 6, and 6 can be written as a sum of squares
in the following ways: 6 =1+1+4,6=1+1+1+ 1+ 14 1 but S; is not abelian,
soC[S3] 2CapCpCpCahCqdC. Thus C[S3] 2= Cad C o My(C).

Dy = {a,bla® = b® = 1,bab = a°). Then |D;2| = 12 and, by calculation, D}, =
(a*|a® = 1). Thus there are 12/3 = 4 linear characters and so, to make 12 as the sum
of the squares of the orders, the orders of the characters must be 1,1,1,1, 2, 2.

Take a’. The conjugates of a’ are b°a *a’b‘a* which is a’ if e = 0 and o if € = 1.
Likewise compute that the conjugates of a’b are a®~2*b and a**~*b for any integer k.
Thus representatives of the conjugacy classes of Dy, are 1,a,a?, a3, b,ab. So far we
know
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2 a> b ab
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IS

a
X1 1
X2
X3
X4
X5
X6

Consider Djy/D}, in more detail. Dy5/D}, = {(a,bla* = b* = 1,ab = ba). So it is
isomorphic to the direct product of two cyclic groups of order 2 which has characters
2

D DO R
—_ = =



the four different choices of &1 on each factor. Thus

1 a a®> & b ab
w1l 1 1 1 1 1
ol =1 1 -1 1 -1
a1l 1 1 1 —1 -1
a1l =1 1 -1 -1 1
X5 2
X6 2

Now use orthogonality. Fill in the table

1 a a®* @ b ab
xt 1 1 1 1 1 1
x2 1 -1 1 -1 1 -1
x3 1 1 1 1 -1 -1
x« 1 -1 1 -1 -1 1
Xs 2 q r s t u
X6 2 v w T Yy =z

Get the system of linear equations

242q+2r+s+3t+3u=0
2—=2q+2r—s+3t—-—3u=0
242q+2r4+s—-3t—-3u=0
2—2q+2r—s—3t+3u=0
24 20+2w+x+3y+32=0
2—204+2w—z+3y—32=0
24 204+2w+2x -3y —32=0
2—2204+2w—x—3y+32=0

and the nonlinear equations
442¢° +2r* + 8% + 3% + 3u® = 12
44207 + 2w + 2% + 3y* + 322 = 12
44 2qv + 2rw + sx 4 3ty + 3uz =0

Solving just the linear part gives
w=r=—-1t=u=y=2=0,s=—2¢,x = —2v

so the nonlinear part becomes

6+ 6¢°> = 12
6+ 602 =12
6+ 6quv =20
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so qu = —1, ¢*> = 1, v?> = 1, giving the final table

X1
X2
X3
X4
X5
X6

1

N DO = = =

CL3

1
-1
1
-1
-2
2

b
1
1
-1
-1
0
0



